人人网中间层:求解篇

书接上文,为了提高性能,在人人网的技术结构中,在数据库和页面之间,有中间层。中间层高性能的基础是用内存代替磁盘。

用内存代替磁盘

数据库系统的最大瓶颈在磁盘IO,大量的小数据请求不是磁盘的强项。人人网中间层服务就是利用了内存代替硬盘的方法来提高整体性能。有了这层服务以后,以前的数据库关联查询被提前计算并缓存,需要访问时直接获取。
通用的Memcached缓存方案也有些不足,数据不能自己变化,也不能部分变化。于是人人网选择了自己实现缓存的方式。
在自己实现缓存的过程中,管理内存相对容易,通信协议是比较复杂的部分,我们在这方面选择了开源的Ice通信框架(http://www.zeroc.com)来完成繁琐的工作,至今它都工作的很好。
Ice通信框架在人人网完成了两件事,通信和定位。客户端通过IceGrid组件定位到需要的服务地址,将请求发送到中间层服务,中间层服务将结果返回。客户端只需要知道一个地址就可以找到所有的服务;同时,众多服务也可以在不同的服务器之间随意迁移。在现在的人人网有超过500个Ice写成的中间层服务在运行。

定制的内存数据

用Ice解决了通信和部署的问题后,中间层服务就是核心的数据结构管理。概括的说,就是灵活变化,保证速度。下面列举若干使用了中间层服务的情况

一份数据 多种排序

在人人网的好友页,有很多排序方式可以显示好友列表。每种列表都是从一个按ID排序的服务中获取的,再经过排序,缓存在各个顺序的列表中。

随时间变化的数据

在很多列表页面,都会显示“在线标志”,这个标志是冗余在各个列表的缓存当中,定期刷新的。这些需要和cache一起实现的业务逻辑,在人人网中间层当中非常普遍。

特殊类型

我们用了一个bit保存用户的激活状态。200M内存可以保存全部int范围的状态。并且查询和更新速度飞快。
接下来的实践篇将会用这个为例子展示中间层的实现。

人人网中间层:问题篇

由开源软件组成的系统

与很多大型的网站一样,人人网的系统全部是由开源软件构建的。使用Nginx做前端接入,resin做容器,Memcached做通用cache,MySQL做数据库,使用Linux操作系统。
除了上述的部分外,人人网还有一个与众不同的中间层。中间层以服务的形式存在,位于MySQL和resin中间,提供高并发低成本的数据访问层。

数据库的压力

在上述结构系统中,数据库的性能往往成为系统瓶颈。人人网在发展的过程中不断重构,改变最大的就是数据库部分。大概的步骤是“优化SQL”,“业务拆分”,“垂直拆分”和“水平拆分”几个阶段,关于数据库优化的细节将来再引用到这里。
经过优化后的数据库,单台可以承担每秒3000次的主键查询。再提高性能的优化,我们采用的方案是使用中间层。

性能目标

增加中间层可以在不增加服务器数量的前提下,提高服务的整体性能,并且提高系统的可扩展性。这里简要列举一些使用中间层服务优化的效果。

实时更新的数据

用户的个人信息数据,目前的写操作500次/秒,读操作2万次/秒。这些数据分布在数十个数据表中,如果用数据库做10次主键查询,需要的时间将会非常可观。中间层的缓存服务把这个性能稳定在了99.9%的请求时间小于20ms。
判断好友关系,读操作900次/秒。这个操作现在使用6G内存存储了所有的好友关系,在2ms内返回任意两人的好友关系。
关联查询,仅好友列表就有1300次/秒。如果使用关联查询,数据库需要同步很多无用的字段。现在只需要两次内存请求,并且衍生出很多种类的排序。

大量聚合的访问

聚合的页面在SNS中是访问量最大的部分。首页集成的功能多达17个模块,这些模块之间的关系相对独立。为了快速的把这些数据集合在一起,就需要迅速获取数据。
我们对整体技术框架的要求是,关键页面执行时间要在100ms以内。

Session同步

众多的resin服务器之间,如何共享用户身份验证的结果,在各种session共享机制中,我们的方案是使用中间层服务来集中存储的。

待续

问题篇只是开端,接下来的“求解篇”将会分析人人网中间层的主要应用场景。“实践篇”将会举例一个典型的中间层服务。